Metformin attenuates myocardial ischemia-reperfusion injury via up-regulation of antioxidant enzymes
نویسندگان
چکیده
The objective was to examine the protective effect of metformin (Met) on myocardial ischemia-reperfusion (IR) injury and whether the mechanism was related to the AMPK/ antioxidant enzymes signaling pathway. Rat Langendorff test and H2O2-treated rat cardiomyocytes (H9c2) were used in this study. Met treatment significantly improved left ventricular (LV) function, reduced infarct size and CK-MB release in comparison with IR group. Decreased TUNEL staining positive cells were also observed in IR+Met group ex vivo. Met treatment markedly inhibited IR inducing cell death and significantly decreased apoptosis with few generations of reactive oxygen species (ROS) in H9c2 cells in comparison with IR group. Up-regulated expressions of phosphorylated LKB1/AMPK/ACC, as well as down-regulated expressions of apoptotic proteins (Bax and cleaved caspase 3) were found in IR+Met group when compared to the IR group. Importantly, Met significantly up-regulated the expression of antioxidant enzymes (MnSOD and catalase) during IR procedure either ex vivo or in vitro. Compound C, a conventional inhibitor of AMPK, abolished the promoting effect of Met on antioxidant enzymes, and then attenuated the protective effect of Met on IR injury in vitro. In conclusion, Met exerted protective effect on myocardial IR injury, and this effect was AMPK/ antioxidant enzymes dependent.
منابع مشابه
The protective effect of bone marrow-derived mesenchymal stem cells in liver ischemia/reperfusion injury via down-regulation of miR-370
Objective(s): Liver transplantation is the most important therapy for end-stage liver disease and ischemia reperfusion (I/R) injury is indeed a risk factor for hepatic failure after grafting. The role of miRNAs in I/R is not completely understood. The aim of this study was to investigate the potential protective role of the mesenchymal stem cells (MSCs) and ischemic pr...
متن کاملHydroalcoholic Extract of Anchusa Italica Protects Global Cerebral Ischemia-Reperfusion Injury Via a Nitrergic Mechanism
Introduction: In stroke models, Inducible Nitric Oxide Synthase (iNOS) expression initiates cellular toxicity due to excessive Nitric Oxide (NO) generation. Anchusa italica is a medicinal herb with anti-inflammatory, antioxidant and neuroprotective properties. This study evaluated the antioxidant activity and NOS mRNA expression of the Hydroalcoholic Extract Of Anchusa Italica (HEAI) in an expe...
متن کاملMethanolic leaf extract of Punica granatum attenuates ischemia-reperfusion brain injury in Wistar rats: Potential antioxidant and anti-inflammatory mechanisms
Objective(s): This study was conducted to evaluate the cerebroprotective effect of methanolic leaf extract of Punica granatum (MePG) in Wistar rats.Materials and Methods: The MePG was initially assessed for in vitro antioxidant activity, and later evaluated on LPS-induced RAW 264.7 cell line assay. Finally, the MePG was evaluated against ischemia-reperfusion (I/R) induced brain injury in Wistar...
متن کاملResveratrol attenuates inflammation and oxidative stress induced by myocardial ischemia-reperfusion injury: role of Nrf2/ARE pathway.
The protective role of resveratrol in myocardial ischemia/reperfusion is not well understood. The aim of this study was to investigate whether resveratrol modulates inflammation and oxidative stress and the possible role of nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway in an ischemia/reperfusion injured rat heart model. Rats were randomly exposed ...
متن کاملInhibiting miR-155 protects against myocardial ischemia/reperfusion injury via targeted regulation of HIF-1α in rats
Objective(s): The aim of this study was to identify the role of miR-155 in the myocardial ischemia/reperfusion (I/R) injury through targeting hypoxia-inducible factor 1-alpha (HIF-1α). Materials and Methods: We constructed rat models with myocardial I/R injury and H9C2 cell models with hypoxia/reoxygenation (H/R) damage. Anti-miR-155 and...
متن کامل